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Kinetic equations are derived for  the relaxation of the vibrat ional  energy in a mixture of 
polyatomlc gases,  which are  ones with molecules simulated by harmonic  osci l la tors .  The 
most general  case is envisaged, where the energy relaxation occurs  not only via  v ib r a t i ona l -  
t rans la t ional  t rans i t ions  but also v ia  multiquantum vibrat ional  exchange involving an a rb i t r a ry  
number of vibrat ional  modes. The analysis also incorporates  the possible degeneracy of each 
mode when the molecules colliding are  the same. An expression is derived that extends p r e -  
vious resul ts  [1-6] and that re la tes  the vibrat ional  t empera tu res  In the case of quasiequfli-  
brium. Equations are derived for the vibrat ional  relaxation for the CO2-N 2 case. 

There  have recent ly  been var ious  papers  [7-14] dealing with the theory  of vibrat ional  relaxation in a 
gas consist ing of potyatomic molecules.  For  instance, in [7-11, 13] there  are  discussions of the vibrat ional  
relaxation of CO 2 or  CO2-N2, CO2-N2-He  , CO2-N2-H20 mixtures for  detailed conditions of nonequili- 
brium, such as excitation of vibrat ions by electron impact or  rapid cooling of gas on flow through a slot or 
nozzle. Use has been made [7, 8, 10, 13] of approximate kinetic equations that do not take into account 
t rans i t ions  between highly excited states.  

Equations have also been derived [9, 12, 14] for var ious  par t icu lar  cases  with allowance for  the 
t rans i t ions  between the upper levels,  and equations have been derived for  relaxation of the vibrat ional  
energy of molecules  represen ted  by a set of harmonic  osci l la tors .  All the same, the use of these  equations 
leads to e r r o r s ,  since they were derived neglecting the degeneracy of the vibrat ions,  or  else considering it 
incorrect ly .  Also, in [9, 12, 14] there  was no co r rec t  considerat ion of the features  of relaxation in the  gas 
consist ing of Identical molecules.  

Another aspect of the theory  of vibrat ional  relaxation In a multicomponent mixture of molecular  gases 
is the distr ibution of the energy between the var lous  vibrat ional  modes in quasiequilibrium, when the energy 
exchange rate  between these  modes substantially exceeds the rate  of v ib ra t iona l - t r ans l a t iona l  relaxation.  
The f i rs t  relat ionships to be derived were  those of [1, 2] for the mean number of vibration quanta and the 
vibrat ional  t empera tu re s  in rapid one-quantum exchange in a binary mixture of diatomic gases;  subsequently 
these  were  extended to the par t icu lar  case  of a multicomponent mixture [3] and for a binary mixture of 
diatomtc gases with two rapid exchange channels [4, 6] and with one channel for multiquantum exchange [5]. 
However,  the express ions  found in [1-6] re la te  the t empera tu re s  only for  two vibrat ional  modes and do not 
ref lect  the  position that may exist when there  is rapid vibrat ional  exchange in the mixture of polyatomlc 
molecules.  

The object of the present  study is to derive the kinetic equations for the relaxation of the vibrat ional  
modes of a polyatomic molecule represen ted  as a set of harmonic  osci l la tors ,  toge ther  with the derivation 
of a general  relat ionship between the vibrat ional  t empera tu re s  in rapid vibrat ional  exchange between modes. 

1. Relaxation Equation for a Vibrat ional  Mode in a Binary Mixture of Polyagomic Gases.  Consider 
the vibrat ional  relaxation in a mixture of the polyatomlc gases  A and B; we take' into account only t r a n s i -  
t ions due to collisions of A and B, which corresponds  to the case where gas A is a minor impuri ty In B. 
The relaxation in the one-component  gas will be considered in Sec. 2. Let the molecules A and B have 
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al together  L types  of modes ,  which a re  r e p r e s e n t e d  by ha rmonic  osc i l la tors .  In this  case,  an a r b i t r a r y  
v ibra t iona l  s ta te  of the A + B s y s t e m  may be desc r ibed  by a set  of v ibra t iona l  quantum numbers  (vl, v2, .. . ,  
v i )  ; one of the poss ib le  re laxa t ion  channels for  the populations of the v ibra t iona l  levels  when A and B 
collide may be put in the f o r m  

(V 1 . . . . .  Vk; U/f+l . . . . .  UL) ~ {Ui; /)~} -'-> (V 1 ~_ l 1 . . . . .  V/f --~ l~; 

v~+~-TZl~+~ . . . . .  i v ~  lr)~{v~=-t-li; vi-7-:l~} ( i = l - ~ ,  i = ~ + I - - L )  (1.1) 

This  f o rmu l a  means  that  the s y s t e m  A + B s t a r t s  f r o m  some initial s ta te  {vi; vj} and as a resu l t  of 
col l is ion p a s s e s  to  a new s ta te  such that  the modes enumera ted  by subscr ip t  t undergo s teps of 11 quanta 
upwards  (downwards), while the  other  modes,  which a re  enumera ted  by subscr ip t  j, undergo t rans i t ions  by 
lj quanta downwards (upwards).  In groups I and j t he r e  may be modes belonging to different  molecules .  We 
dist inguish in molecule  A an a r b i t r a r y  mode f belonging fo r  instance to the group of modes I, and we cons i -  
der  the change in the mean number  of v ibra t iona l  quanta ~ for  this  mode. F i r s t  of all  we wr i te  down the 
ba lance  equations for  the change tn the populat ions N A (v~): of the v~ levels  as a resu l t  of the p r o c e s s  of 
(1.1) on coll is ion of A and B: 

dN A (V~) ZAB F (Vi - -  li ---> VO 
dt = T B  ~ ' I P A ~ I  ~Na{v~x -- lia; 

[Ok ---> Vi - -  li] 
V~A + l~a } NB {Vl B --  l~B; V@ --}- liB} - -  PAB IVj --+ V~ "4- ljl • 

• NA {V~A; V~A} NB {riB; V~B} "+ PAB ! v~ "}- l~---> Vq 

__ t l q v i  --* vi __ {v~s; V~B! "J (1.2) x NB{VgB+II~; V~B--IjB } PA~(v~. . .~Vj+t$jNA{viA;VjA}N~ 

NA (V~).= ~ NA {UiA; U~A} 
viA~v ~ 

H e r e  NA{Vi ; v. } and NB{V i ; v- } a r e  the populations of the v ibra t iona l  s ta tes  {ViA; ViA} and A JA B JB 
{ViB; VjB } r e spec t ive ly  of molecules  A and B, while N A and N B a re  the total  numbers  of molecules  A and 
B in unit volume,  ZAB ls the number  of col l is ions of pa r t i c l e s  A and with B molecules  in unit t ime ,  and 
PAB is the probabi l i ty  of a composi te  v ibra t iona l  t r ans i t ion  in the A +B s y s t e m  in one collision, The sum-  
mation in (1,2) is taken over  all  levels  of all modes in both molecules ,  apar t  f r o m  the dist inguished mode 

inA .  

We a s s u m e  that  each mode I or  j may have degeneracy  r I or  r j ;  then the pr inc ip le  of detai led ba lanc-  
ing gives the probabi l i t i es  of the fo rward  and r e v e r s e  p r o c e s s e s  as r e l a t ed  by re la t ionships  of the  f o r m  

f i  L 

P'*B~v~+lj~vj = ~ { ~ - h ; O + t A  t v j ~ v j + b  ~=~ ~=~+~ 
(1 .3 )  

Here  
is the s ta t i s t i ca l  weight of the {vi; vj} v ibra t iona l  s ta te  of A + B: 

(v i + r i -- I)I 
g {v~; vj} = g (Vl).  �9 �9 g (v~) g ( v ~ + l ) . . .  g (v,~) = 1-[ (,~ t)! x i=l  vi! - -  

h( )h( ) X I I  (vj+rj--1)! = v i q - r i - - I  - v ~ - 4 - r j - - t  
~=~+1 vj~ (rj-- 1)l i=l \ vl d=~+l vj 

hv s ~ s = i . - ~ t - - k  

v s Is the f requency  of the normal  v ibra t ions  of mode s, T ts the gas t e m p e r a t u r e ,  and g{vi; vj} 

(i .4) 

To der ive  f r o m  (1.2) the re levant  equation for  the v ibra t iona l  energy  of mode ~,  we exp re s s  the 
value of PAB for  t r ans i t ions  between a r b i t r a r y  upper  s ta tes  in t e r m s  of the cor responding  probabi l i t i es  for  
t r ans i t ions  between the lowest  levels  involved in t rans i t ion .  In this case  [15] 

�9 " : ( 1 . 5 )  

[Uj-- l j . . -~U~J ' g { v j - - l j } g { l j . )  tO--~ gjj i=l~ j = k + l \ V j  
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Fur ther ,  for  each type  of normal  v ib ra t ion  (mode) we introduce a v ibra t iona l  t e m p e r a t u r e  Ts ,  which 
c h a r a c t e r i z e s  the quantity of v ibra t iona l  energy  in that  mode. This  is poss ib le  because ,  as for  dia~omic 
molecules ,  the v ibra t iona l  exchange within each type of v ib ra t ion  occurs  in a t ime  much less  than the t ime  
needed for  t r ans i t ion  of energy to t r ans l a t iona l  deg rees  of f r e edom and exchange of energy  between d i f fe r -  
ent v ib ra t iona l  modes.  The t e m p e r a t u r e s  T s will genera l ly  differ  one f r o m  another  and f r o m  the gas t e m -  
p e r a t u r e  T. Then the populat ions in (1.2) may be put in the f o r m  

v. r. via (1 -- XjA) rjA NA {V{A; vj A} = NAg{ViA; V) A} .[I XIAA (i --  XiA) 'A H XiA 
*A ]A 

(1.6) 

o r  in m o r e  compact  fo rm,  omit t ing the subsc r ip t s  A and B, 
k L 

p] r. r, 
NA {V~A; V~A} N~ {v~; v@} = NxN~g {vi; vJ [ I  xi (1 -- xi) '  l ]  x~ ~ (t --  x~) ~ (1.7) 

kT s / = k -~ i -- L) (1.8) 

If some  mode s belongs,  for  ins tance,  to molecule  A, then the mean r e s e r v e  of v ibra t iona l  quanta 8 s 
in th is  mode pe r  molecule  may be e x p r e s s e d  in t e r m s  of Xs; here  we multiply (1.6) by v s and sum over  all 
{VIA; ViA} that  include v s f r o m  0 to  ~ .  We sum using (1.4) and (1.8) and omi t  the subsc r ip t  A to get 

e~ = rsxs/'(l --  xs) (1.9) 

The summat ion  over  all  {VIA; VjA} in (1.9) has taken into account the contr ibution f r o m  combinat ion 
levels  to the total  ~ s in mode s. 

Now we r e tu rn  d i rec t ly  to der ivat ion of the kinetic equation for  the v ibra t iona l  energy in mode ~. 
We mult iply both pa r t s  of (1.2) by v~ and then sum over  all {vi; vj} including v~ f r o m  0 to ~ and use  (1.3)- 
(1.9) to get a f te r  t r a n s f o r m a t i o n  that  

l~ / ~  l i ~ -lj l) / i )  ,d/: : ZABPAB [~"-->0 t k L k 

=i J=~+Z i=Z 
k ~o 

x 1]  (~ - ~1'~ :E (~ + 4 + ~ i -  ~)' ~ ~ ~- i=1 vi=~ v{! li! ( r i - -  if! Xi H (t - -  Xi) ~ X 
j:~+z 

~. f/i --> O] 
X v]=02 (v/~-lj-~-rj--t)ivj! lj! (r j - -  i)' X / : Z A B I : g { l i } P A B I o . - - > [ ~ X  

k L k k 

- ' '  ' O n  ' ~=1 ]=I~+1 i=l i=l 
L 

x II ( l  - ~ 1 5 t , ( ~  + r~, l ;  i :  x~) ( i . l O )  

F r o m  (1.10) we get the final f o r m  for  the  equation by using the explicit  f o r m  for  the h y p e r g e o m e t r i c  
functions: 

de~ [/{--~0] ({~_z L _ziij ~ ) Q 

= i=~+1 i=1 

X ~ \ ] 4  (~t--xl) ~ (i --x~) ' 

We use  (1.9) and the equi l ibr ium value g0s for  the gas t e m p e r a t u r e  T 

~0~ = r ~ / ( l  - ~ )  

to r ewr i t e  (1.11) in the f o r m  

d~ [li--+ O] li d- rl -- I -~ 
= ZAuPA, ,  IO --+ lj[, l~ [r{ (ri + %~)] [ [  dt '= /=~+z 

k L 
- - H  [si(ri~-%i)] l i l ]  [soJ(rJ+si)] l'} 

k L 

(1 .n )  

( i . i2)  
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The probabil i ty  PAB [0 --~ l~j, appearing in (1.11) and (1.12) is dependent on the degeneracy of the 

modes I and j Involved In the t ransi t ion;  it has been shown [15] 

where  ~SSH 
~" AB 

method [16, 17]. 

)] = ,-A~ 1] r, I-[ r~ (1.13) 

is the t rans i t ion  probabil i ty  calculated without allowance for  the degeneracy by the usual SSH 

We substi tute (1.13) in (1.12) to get a fo rm for  the kinetic equation 

�9 d e ~  

dt 
~)SSH . I lr l~ (r, ~- so~)-~i [1%~ 1] [%~ (ri -b e,)] t~ • 

= [ J A R r A B  [0  --> gjJ i=~ j=h'--1 i = l  

L k L 
' } X I I  [e~(r~q-eoJ) l ; - I I  [et(ri+eoi)] t~ ]I [e0~(r~'. e~)l ~ 

j = ~ f + l  i = 1  j = k - ~ l  
(1.14) 

Equations (1.11), (1.12), and (1.14) descr ibe  the relaxat ion of the vibrat ional  quanta or energy in mode 
via  one channel, which is specif ied by giving the numbers  {l i; lj } ; if t he re  are  severa l  channels, the 

ra tes  as calculated via (1.11), (1.12), and (1.14) become somewhat more  complicated. Naturally,  the r e -  
sulting equation for  e~ in the general  case  must be solved in conjunction with other equations describing 
the energy relaxat ion in the other  modes. 

Equations (1.11), (1.12), and (1.14) a re  the most general  fo rm of the equations for  the vibrat ional  
energy  of quanta In a mixture  of harmonic  osc i l la tors ,  and they descr ibe  the re laxat ion on the coll is ion 
of different  molecules;  if l i = l  ] =0 (for i ;~ ~), l~ =1, and then (1.11), (1.12), and (1.14) become the usual 
Landau-Te l l e r  express ion  for  v ib r a t i ona l - t r ans l a t i ona l  relaxat ion.  If L=2 ,  l~ =1, l j =1, r$ =1, rj =1 they 

cor respond  to one-quantum exchange in the binary mixture  ofdia tomic  molecules .  In the  pa r t i cu la r  case 
{ / i ;  I j} - 1, (1.11), (1.12)' and (1.14) become the formula  der ived in [12] for  {r i ;  rj} =1, which descr ibes  
the one-quantum exchange involving many modes. However,  in [12] and also in [9, 14] there  was an in- 
c o r r e c t  considerat ion of the case of degenerate  osci l la tors ;  also, in [9, 12, 14] the re  was no ~ co r r ec t  dis-  
cussion of some fea tures  of the relaxat ion when identical molecules  collide. 

2. Relaxation of a Mode Energy in a One-Component Polyatomic  Gas. Th e re  are  special  fea tures  in 
the relaxat ion in A +A coll is ions because  t h e r e  is a difference f ro m  the A +B case  in that the a rb i t r a ry  
energy state is not defined unambiguously by the sole choice of the set of quantum numbers {vi; vj} for  the 
two molecules ,  and the resu l t  is the same if, for  instance,  in one molecule for  a mode we consider  instead 
of level  v I the level  v i +k, while for  the other  molecule in the same mode we consider  in place of level wi 

a level  w i - k .  In fact  this means that in A+A coll is ions par t  of the energy or some of the quanta lost  by 
mode ~ f rom one molecule A may be d i s t r ibu ted  different ly in the two molecules.  Formal ly ,  this case  co r -  
responds to doubling the degeneracy of each mode, so the equation for  the re laxat ion of the vibrat ional  
quanta in mode ~ in the one component polyatomic gas can be der ived by using the resul ts  of the previous 
section. In this  case we have, instead of (1.12), 

d~ i ~, ii~_~O ) h ( l ~ + 2 r i _ l  i L 
dt ~'-TZAAPAAio-->lj l  l ~ - ~ \ j l i  [ri(r~+eoi)] -~ II  (rJsoi) -~jX 

If L k L , 

The symbols he re  are  as in Section 1, while the probabil i t ies  are  [15] defined by 

PAA (0 --~ lfl = /O --, lj] (2r~)li 1] (2rS~ l~ = i=~+1 . = 
(2.2) 

We substi tute (2.2) into (2.1) to get an equation analogous to (1.14): 

L 

d ~  = 1 ~ , ~  . s s .  JZ*-~~  t ~ L dt "~  1] 21~ ' 1] ~ ~'AA'-AA [0 ~ ljJ l~ [I  (ri + eo~) -'i I I  coy [sol (r~ + e,i)] ~i l-[ 
i = 1  # = h - + l  i = l  ~ = ~ + 1  = ~ = k + l  

k L 

- I I  I~(r~+ ~.~)l z~ [[  I~,0j(rj+ ~)l~J} 
4=1 d = a + i  

[ej (r~ + e0~)]zJ - 

(2.3) 
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Comparison of (i.14) and (2.3) shows that the relaxation equations for ~ inthe A + B mixture take 

the same form as for a one-component gas; in the latter case, however, under othet~vise similar conditions 
we get the additional factor 211 + 12 + ..o + I k + I k + ~ + ..o +/L -I, which increases the relaxation rate, and the 
presence of this is related to the additional relaxation channels for mode ~ in A +A collisions on account 
of the different possible ways of redistributing the vibrational energy between identical molecules before 

and after collision. Therefore (2.3) can be obtained directly by summing (1.14) as written for each possible 
relaxation channel with the participation of two identical modes from groups i and j belonging to different 

molecules. These channels differ in that the jumps in transitions ia identical molecules can be different and 

can vary within limits from 0 to I i or [j, but the sum of the jumps in these modes must always be equal to 

l i or lj for a given energy transition. 

3. Equations for Vibrational Relaxation for a CO 2-N 2 Mixture. We use the general expressions 
derived in Secs.l and 2 to describe the vibrational relaxation In a CO2-N 2 mixture; very detailed studies 
have recently been made [7-14] on relaxation in CO 2 and In mixtures such as CO2-N2, CO2-Na-He , etc., 
which Is due to the production of high power infrared radiation at 10.6 > in the 00~ transition and 

C%. 

We number from 1 to 4 the symmetrical, bending, and a ntisymmetrical modes of CO 2 and the vibra- 
tion of N2: 

(h% / k) = 2000 ~ K, (h% / k) = 960 ~ K, 
( h % / k )  -- 3380 ~  ( h % / k )  = 3353 ~  

H e r e  r I = r  a = r  4 =1 ,  r 2 =2 (the b e n d i n g  m o d e  is  d o u b l y  d e g e n e r a t e ) ,  and  t h e  m a i n  r e l a x a t i o n  c h a n n e l s  in  
m o d e s  1 -4  a r e  due  to  t h e  f o l l o w i n g  p r o c e s s e s  (the c o r r e s p o n d i n g  p r o b a b i l i t i e s  a r e  shown  on t h e  r i gh t ) :  

N2 (v = I) + CO= (00~ ~ C02 (00~ + Nz (v -- 0), 

N, (v = i) + CO~. (00~ ~ [ N, (v = 0) + CO. 01'0), 
t N~ (v = 0) + co~ (oa,o), 

{ C Q  (1i10) § M, 
co~ (oo~ + M ~ co2 (o3~o) + M, 

CO~ (t0~ -+- M ~ C02 (02~ F M, 
Co~ (01*0) + M ~ C02 (oo~ + M, 

p (4-> 3) 
p (4-> 1, 2) 
P (4 -> 2) 
p,u (3 -> i ,  2) 

pM (3 - ,  2) 
p_~i (1 - .  2) 
P-~ (2 -> 0) 

(3.i) 

Here IVI= CO 2 or N 2. Note that in (3.1) we have written for clarity only the transitions between the 
lowest levels; we have also made the simplifying assumptions 

h%=hv4, hv1=2h%, z~l, T2=TI 

(the last assumption is usually justified in view of the rapid exchange of vibrational quanta between the 
symmetrical and bending modes, since pM (i-+ 2) is much larger than the other probabilities). Subject to 

these assumptions, we use (3.1) with (1.12) and (2.1) to write the relaxation equations for CO2-N 2 in the 
form 

de4 
Zx,,co~{P (4-+  3) (% - -  q )  + P (4--> E) • 

dt 

500 e.-,. 3 "1 ' a " \ a l ~  

dea 
= { -  Zco,.,,xs (4-> 3) (e3-  e.~) + [Zco,.co,P c~ (3 - ,  5 ')§ a{ 

% 

T)(T) § (.., 
d (~2 + 2e0 

dt .... [ - -  3 [Zco,, cO,P cO' (3 --> Y,) §  x=P y= (3 --> X) l x 

g~ ' 3 

+ Zco,.~. pa ,  (2 -+ 0)1 (i - -  ~,)(Co2 - -  e2)} 

H e r e  f o r  s i m p l i c i t y  we  have  i n t r o d u c e d  t h e  s y m b o l s  

P (4 --> E) -- P (4 --> 2) + P (4 --. 'i, 2) 

p~1 (3 --~ Z,) = pa,r (3 -+ 2) + p~,~l (3 ~ .  l ,  2) 
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The solution to (3.2) gives fa i r ly  accura te  r e su l t s  when one uses  the obse rved  probabi l i t ies ;  one can 
wr i t e  a lso  equations r e s e m b l i n g  (3.2) by using (1 .14)and (2.3), but then one needs calcula ted probabi l i t ies ,  
which at p r e sen t  a r e  l ess  accura te  than the obse rved  ones 

4. The Quas i s t a t iona ry  Energy  Distr ibut ion in a Mixture of Po lya tomic  Gases .  Such a distr ibution 
can a r i s e  when the v ibra t iona l  energy  exchange ra te  as between different  modes substant ia l ly  exceeds  the 
ra te  of v i b r a t i o n a l - t r a n s l a t i o n a l  re laxat ion.  Here ,  although the re  is a genera l  nonequil ibrium in the 
v ibra t iona l  energy  of the sys t em,  the Ts  fo r  the individual modes a r e  s t rongly  linked and the i r  va lues  a re  
de te rmined  only by this genera l  no ,equi l ib r ium energy  r e s e r v e  and by the gas t e m p e r a t u r e  T;  it is found 
[1-6] that  the coupling between the v ibra t iona l  t e m p e r a t u r e s  in the quas i s t a t ionary  distr ibution can be found 
by consider ing the s t eady - s t a t e  (d ~}/dt =0) re laxa t ion  equations fo r  the mean s to re  of v ibra t iona l  quanta in 
the va r ious  modes,  e l iminat ing f r o m  these  t e r m s  that  desc r ibe  the v i b r a t i o n a l - t r a n s l a t i o n a l  re laxat ion 
channel. We s t a r t  f r o m  th is  ba s i s  and r e s t r i c t  considera t ion  to  v ibra t iona l  exchange occur r ing  for  each 
mode only v ia  one channel, and then f r o m  (1.14) and (2.3) we find that  for  the quas i s ta t ionary  dis t r ibut ion.  

k L k L 

II [~o~(r~ + ~)f ,  II [~J (rj + ~o~)fJ = H I~ (r~ + ~o~)1'~ II [~oj(r~ + ~)]'J (4.1) 
i=a i=k+l i : l  i=/~+l 

Then we get a re la t ionship  between the v ibra t iona l  t e m p e r a t u r e s :  

k L k L 

Ti ~ ~ - - - -  l ihv,--  ~, lihvj T -1 
i=i i=k+1 " - -  i=k+1 

(4.2) 

Expres s ion  (4.2) extends the r e su l t s  of [1-6] for  rapid  mult iquantum vibra t iona l  exchange via  one 
channel to the case  of an a r b i t r a r y  number  of modes  involved in the exchange; (4.2) has been der ived f r o m  
the condition dr =0 for  a s ingle a r b i t r a r i l y  se lec ted  mode ~.  Analogous expres s ions  (of course  with 
other  [i  and [j) apply for  all  the other  modes  in this  sys tem.  The resul t ing  L equations of (4.2) type may be 
cons idered  as a s y s t e m  of L l inear  equations re la t ive  to the L unknowns Ti  -1, Tj-1; if the de te rminant  of 
th is  s y s t e m  differs  f r o m  zero ,  t he r e  is the unique t r i v i a l  solution T l =Tj =T,  which means  that one cannot 
es tabl ish  a nonequl l ibr ium quas i s t a t ionary  distr ibution.  

If  the number  Q of independent equations is l e s s  than L, t he r e  is always a solution with Ti ,  Tj  # T; 
th is  case  co r r e sponds  to a quas i s t a t iona ry  dis tr ibut ion,  and the value of Q de te rmines  the s t rength of the 
coupling between the v ibra t iona l  t e m p e r a t u r e s .  For  instance,  with a Q = L - l ,  the t e m p e r a t u r e s  of all modes 
may be e x p r e s s e d  in t e r m s  of the  t e m p e r a t u r e  of one, and the value of this t e m p e r a t u r e  is de te rmined  by 
the genera l  nonequi l ibr ium v ibra t iona l  energy  r e s e r v e  of the sys tem.  If Q = L - 2 ,  the coupling is reduced,  
and the t e m p e r a t u r e s  of two modes becom e  independent. T h e r e f o r e ,  with Q_< L - 2  we can speak only of 
pa r t i a l  quas iequi l ibr ium.  

We are  indebted to L. A. Shelepin for  valuable  d iscuss ions  on the resul t s .  
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