KINETIC EQUATIONS FOR VIBRATIONAL RELAXATION
IN A MIXTURE OF POLYATOMIC GASES
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Kinetic equations are derlved for the relaxation of the vibrational energy in a mixture of
polyatomic gases, which are ones with molecules simulated by harmonic oscillators. The
most general case is envisaged, where the energy relaxation occurs not only via vibrational—
translational transitions but also via multiguantum vibrational exchange lnvolving an arbitrary
number of vibrational modes. The analysis also incorporates the possible degeneracy of each
mode when the molecules colliding are the same. An expression Is derived that extends pre-
vious results [1-6] and that relates the vibrational temperatures in the case of quasiequili-
brium. Equations are derived for the vibrational relaxation for the CO,—N, case.

There have recently been various papers [7-14] dealing with the theory of vibrational relaxation in a
gas consisting of polyatomic molecules. For instance, in [7-11, 13] there are discussions of the vibrational
relaxation of CO, or CO,—N,, CO,—N,—He, CO,—N,—H,0 mixtures for detalled conditions of nonequili-
brium, such as excitation of vibrations by electron impact or rapid cooling of gas on flow through a slot or
nozzle. Use has been made [7, 8, 10, 13] of approximate kinetic equations that do not take into account
transitions between highly excited states.

Equations have also been derived [9, 12, 14] for various particular cases with allowance for the
transitions between the upper levels, and equations have been derived for relaxation of the vibrational
energy of molecules represented by a set of harmonic oscillators. All the same, the use of these equations
leads to errors, since they were derived neglecting the degeneracy of the vibrations, or else considering it
incorrectly. Also, in [9, 12, 14] there was no correct consideration of the features of relaxation inthe gas
consisting of identical molecules.

Another aspect of the theory of vibrational relaxation in a multicomponent mixture of molecular gases
is the distribution of the energy between the various vibrational modes in quasiequillbrium, when the energy
exchange rate between these modes substantially exceeds the rate of vibrational ~translational relaxation,
The first relationships to be derived were those of [1, 2] for the mean number of vibration quanta and the
vibrational temperatures in rapid one-quantum exchange in a binary mixture of diatomic gases; subsequently
these were extended to the particular case of a multicomponent mixture [3] and for a binary mixture of
diatomic gases with two rapid exchange channels [4, 6] and with one channel for multiquantum exchange [5].
However, the expressions found in [1-6] relate the temperatures only for two vibrational modes and do not
reflect the position that may exist when there is rapid vibrational exchange in the mixture of polyatomlic
molecules.

The object of the present study is to derive the kinetic equations for the relaxation of the vibrational
modes of a polyatomic molecule represented as a set of harmonic osclllators, together with the dertvation
of a general relationship between the vibrational temperatures In rapid vibrational exchange between modes.

1. Relaxation Equation for a Vibrational Mode in a Binary Mixture of Polyatomic Gases. Consider
the vibrational relaxation in a mixture of the polyatomlc gases A and B; we take into account only transi-
tlons due to collisions of A and B, which corresponds to the case where gas A is a minor impurity in B.
The relaxation in the one-component gas will be considered in Sec. 2. Let the molecules A and B have
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altogether L types of modes, which are represented by harmonic oscillators. Inthis case, an arbitrary
vibrational state of the A +B system may be described by a set of vibrational quantum numbers (vy, vy,
v1); one of the possible relaxation channels for the populations of the vibrational levels when A and B
collide may be put in the form ‘
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This formula means that the system A +B starts from some initial state {VI? Vj} and as a result of
collision passes to a new state such that the modes enumerated by subscript { undergo steps of [ quanta
upwards (downwards), while the other modes, which are enumerated by subscript j, undergo transitions by
lj quanta downwards (upwards). In groups I and j there may be modes belonging to different molecules. We
distinguish in molecule A an arbitrary mode ¢ belonging for instance to the group of modes i, and we consi-
der the change in the mean number of vibrational quanta &¢ for this mode. First of all we write down the
balance equations for the change in the populations Ny (v¢) of the v levels as a result of the process of
(1.1) on collision of A and B:

aN, (”g) Zap ’ v;—li—v;
— 25 = P Nafvi, — lig
dt Np viz*r'i [ 4B {l}j +1;— Uj} atvig A

ui—wi—li
vjA»_l_le}NB{U,'B—L;B; U]'B—I—ljB}'—'PAB vj'—>vj+lj X
vi+li—v;

v;— l;—v;

Vi~ U3+ 1
}NA {v’iA; UjA} NB {viB; UJ'B}] (1.2)

¥ Na (01,3303} N 0igi v} - PAB{ } Na oy + gy, — i)

X NB{D,;B + liB; Vi — ljB} — Pup {vj——w,- —1

NA (UE)/: 2 NA {UiA; viA}
. v; 42V

Here NA{ViA; VjA} and NB{viB; va} are the populations of the vibrational states {ViA? VjA} and
{ViB; VjB} respectively of molecules A and B, while Ny and Ng are the total numbers of molecules A and
B in unff volume, Z, ¢ is the number of collisions of particles A and with B molecules in unit time, and
PAR 18 the probability of a composite vibrational transition in the A +B system In one collision. The sum-
mation in (1.2) s taken over all levels of all modes in both molecules, apart from the distinguished mode
5 in A.

We assume that each mode 1 or j may have degeneracy rj or rj; then the principle of detailed balanc-
ing glves the probabilities of the forward and reverse processes as related by relationships of the form
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Here vg is the frequency of the normal vibrations of mode s, T is the gas temperature, and glvis Vj}
is the statistical weight of the {vis Vj} vibrational state of A +B:
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To derive from (1.2) the relevant equation for the vibrational energy of mode &, we express the
value of Ppp for transitions between arbitrary upper states in terms of the corresponding probabilities for
transitions between the lowest levels involved in transition. In this case [15]
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Further, for each type of normal vibration (mode) we introduce a vibrational temperature Tg, which
characterizes the quantity of vibrational energy in that mode. This is possible because, as for diatomic
molecules, the vibrational exchange within each type of vibration occurs in a time much less than the time
needed for transitlon of energy to translational degrees of freedom and exchange of energy between differ-
ent vibrational modes. The temperatures Ty will generally differ one from another and from the gas tem-
perature T. Then the populations in (1.2) may be put in the form
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or in more compact form, omitting the subscripts A and B,
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If some mode s belongs, for instance, to molecule A, then the mean reserve of vibrational quanta ¢
in this mode per molecule may be expressed in terms of xg; here we multiply (1.6) by vg and sum over all
{ViA; VjA} that include vg from 0 to «©. We sum using (1.4) and (1.8) and omit the subscript A to get

8s = reZs/(1 — z) (1.9

The summation over all {le; VJ'A} in (1.9) has taken into account the contribution from combination
levels to the total €g in mode s.

Now we return directly to derivation of the kinetic equation for the vibrational energy in mode £.
We multiply both parts of (1.2) by v¢ and then sum over all {Vﬁ vj} including \£3 from 0 to « and use {1.8)~
(1.9) to get after transformation that
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From (1.10) we get the final form for the equation by using the explicit form for the hypergeometric
functions:

de; I;—0 L T
T = ZABPAB{O__)Z.} l?, (H Bil H Bj 7,2;3.? _._II ,2:#) X
7 i=1  j=k4-1 =1
e L
by —1 L, -1,
XH( zf )(1—zi) I a—ay (1.11)
i=1 * F==k41

We use (1.9) and the equilibrium value €,g for the gas temperature T

&g = rs;e's/(1 - Bs)
to rewrite (1.11) in the form
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The probability Paopg {%:?}, appearing in (1.11) and (1.12) is dependent on the degeneracy of the
7

modes 1 and j involved In the transition; it has been shown [15]
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where PSEIg is the transition probability calculated without allowance for the degeneracy by the usual SSH

method [16, 17]. We substitute (1.13) in (1.12) to get a form for the kinetic equation
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Equations (1.11), (1.12), and (1.14) describe the relaxation of the vibrational quanta or energy in mode
£ via one channel, which is specified by giving the numbers {I i; lj} ; If there are several channels, the
rates as calculated via (1.11), (1.12), and (1.14) become somewhat more complicated. Naturally, the re-
sulting equation for €t in the general case must be solved in conjunction with other equations describing
the energy relaxation in the other modes.

Equations (1.11), (1.12), and (1.14) are the most general form of the equations for the vibrational
energy of quanta in a mixture of harmonic oscillators, and they describe the relaxation on the collision
of different molecules; if /j=Ij=0 (for 1 = &), I¢ =1, and then (1.11), (1.12), and (1.14) become the usual
Landau-Teller expression for vibrational —translational relaxation. If L=2,1 £ =1,1 j =1, rg =1, rj=1 they
correspond to one-guantum exchange in the binary mixture of diatomic molecules, Inthe particular case
{13 lj} =1, (1.11), (1.12), and (1.14) become the formula derived in [12]} for {ri; rj} =1, which describes
the one-gquantum exchange involving many modes. However, in [12] and also in {9, 14] there was an in-
correct consideration of the case of degenerate oscillators; also, in [9, 12, 14] there was no correct dis-
cussion of some features of the relaxation when identical molecules collide,

2. Relaxation of a Mode Energy in a One-Component Polyatomic Gas. There are special features in
the relaxation in A +A collisions because there is a difference from the A +B case in that the arbitrary
energy state is not defined unambiguously by the sole choice of the set of quantum numbers {vis vj} for the
two molecules, and the result is the same if, for instance, in one molecule for a mode we consider instead
of level v the level v +k, while for the other molecule in the same mode we consider in place of level wi
a level w;—k. In fact this means that in A+A collisions part of the energy or some of the quanta lost by
mode £ from one molecule A may be distributed differently in the two molecules. Formally, this case cor-
responds to doubling the degeneracy of each mode, so the equation for the relaxation of the vibrational
quanta in mode £ in the one component polyatomic gas can be derived by using the results of the previous
section. Inthis case we have, instead of (1.12),
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We substitute (2.2) into (2.1) to get an equation analogous to (1.14):
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Comparison of (1.14) and (2.3) shows that the relaxation equations for e inthe A + B mixture take
the same form as for a one-component gas; in the latter case, however, under otherwise similar conditions
we get the additional factor 24 + I+ ...+l + {4 4+ ...+ I1~1, which increases the relaxation rate, and the
presence of this is related to the additional relaxation channels for mode £ In A +A collisions on account
of the different possible ways of redistributing the vibrational energy between identical molecules before
and after collision. Therefore (2.3) can be obtained directly by summing (1.14) as written for each possible
relaxation channel with the participation of two identical modes from groups i and j belonging to different
molecules. These channels differ in that the jumps in transitions in identical molecules can be different and
can vary within limits from 0 to [y or lj, but the sum of the jumps in these modes must always be equal to
I orlj for a given energy transition.

3. Equatlons for Vibrational Relaxation for a CO,~N, Mixture, We use the general expressions
derived inSecs.1 and 2 to describe the vibrational relaxation in a CO,—N, mixture; very detafled studies
have recently been made [7-14] on relaxation in CO, and i{n mixtures such as C0O,—N,, CO,~N,—He, etc.,
which s due to the production of high power infrared radiation at 10,6 u in the 00°1—10% transition and
CO,.

We number from 1 to 4 the symmetrical, bending, and antisymmetrical modes of CO, and the vibra-
tion of Nj:

(hvy ] B) = 2000° K, (hv, / k) = 960° K
(s / k) = 3380° K, (hv, / k) = 3353° K

Here ry=r3=r,=1, r,=2 (the bending mode is doubly degenerate), and the main relaxation channels in
modes 1-4 are due to the following processes (the corresponding probabilities are shown on the right);

N, (v = 1) 4 €O, (00°0) = CO, (00°1) 4 N, (v = 0), P(4—3)
o [ Na(o = 0) 4 CO, (1170), Ph—1,2)
No (0 =1+ CO 0001 ¢, _ 0) 4- o, (0310), P(h—2)
. CO, (1110) 4 31, PM(351,2) (3.1)
€O, (U°1) = M = { CO, (0310) - M, PM(3-52)
CO, (10°0) +- M 2= CO, (02°0) - A1, PI(1 > 2)
CO, (0120) -+ M = CO, (00°0) + M, PM (25 0)

Here M=CO, or Ny. Note that in (3.1) we have written for clarity only the transitions between the
lowest levels; we have also made the simplifying assumptions

hvg = hvy, hvy = 20vy, 2,<€1, Ty=T,

(the last assumption is usually justified in view of the rapid exchange of vibrational quanta between the
symmetrical and bending modes, since PM (1— 2) is much larger than the other probabilities). Subject to
these assumptions, we use (3.1) with (1.12) and (2.1) to write the relaxation equations for CO,—N, inthe
form

d;
S =2y, co,{P<4->3>(e3—e4) P(4— %) x

<o (- )T a1+ 3]

_";% - {_ Zeoum,P (b~ 3) (65 — &) 4 1 Zc0..c0,PCO (3 — ) +
+ Zoo P 3 — D [exp (= NG 4 e — (1 + 2]} 3.2)
d(s.z;za]) = {~ 31Zg0y.c0. PO (3 — B) = Zeg, x, PN+ (3—> )] X
x[exp () (5 (4 e — e (1 + 2|~ 8Z00,x, P (5 D) x
x[exp (=) (5 ) ke —ea(t + 5]+ ZooucoPo 200+ 2.1)

+ Zco,,x, P (2= 0)] (1 — Bo) (200 — €2)}
Here for simplicity we have introduced the symbols

Plho3)=Plh—2)+ Plh—1,2
PM(3 5 3) = PM(3—2) + PM(3-—-1,2)
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The solution to (3.2) gives falrly accurate results when one uses the observed probabilities; one can
write also equations resembling (3.2) by using (1.14) and (2.3), but then one needs calculated probabilities,
which at present are less accurate than the observed ones

4, The Quasistationary Energy Distribution in a Mixture of Polyatomic Gases., Such a distribution
can arise when the vibrational energy exchange rate as between different modes substantially exceeds the
rate of vibrational —translational relaxation. Here, although there is a general nonequilibrium in the
vibrational energy of the system, the Tg for the individual modes are strongly linked and their values are
determined only by this general nonequilibrium energy reserve and by the gas temperature T; it is found
[1-6] that the coupling between the vibrational temperatures in the quasistationary distribution can be found
by consldering the steady-state (d €t /dt =0) relaxation equations for the mean store of vibrational quanta in
the various modes, eliminating from these terms that describe the vibrational —translational relaxation
channel. We start from this basis and restrict consideration to vibrational exchange occurring for each
mode only via one channel, and then from (1.14) and (2.3) we find that for the quasistationary distribution,

k L
TT teos (r el TT 50y + eo™ H[si(r1+sm)1z H [eo; (5 + €)1 (4.1)

i=1 j=k+1 j=k41

Then we get a relationship between the vibrational temperatures:

k L k L
l s ! b
ti 2 i (Z Livi — 2 l,-hvj) 7 4.2)
=1 j=k+ i=1 J=k+1

Expression (4.2) extends the results of [1-6] for rapid multiquantum vibrational exchange via one
channel to the case of an arbitrary number of modes involved in the exchange; (4.2) has been derived from
the condition dez/dt =0 for a single arbitrarily selected mode §. Analogous expressions (of course with
other [; and [; ) apply for all the other modes in this system. The resulting L equations of (4.2) type may be
considered as a system of L linear equations relative to the L unknowns Ti™! ; if the determinant of
this system differs from zero, there is the unique trivial solution Ty =T;=T, which means that one cannot
establish a nonequilibrium quasistationary distribution.

If the number Q of independent equations is less than L, there is always a solution with Ty, Tj = T;
this case corresponds to a quasistationary distribution, and the value of Q determines the strength of the
coupling between the vibrational temperatures. For instance, with a @ =L—1, the temperatures of all modes
may be expressed in terms of the temperature of one, and the value of this temperature is determined by
the general nonequilibrium vibrational energy reserve of the system. If Q=L—2, the coupling is reduced,
and the temperatures of two modes become independent. Therefore, with @< L—2 we can speak only of
partial quasiequilibrium.

We are indebted to L. A. Shelepin for valuable discussions on the results.
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